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Abstract- Both stationary and non-stationary fractional Brownian profiles (self-affine pro tiles)
with known values of fractal dimension, D, input standard deviation, 0', and data density, d. were
generated. For different values of the input parameter of the variogram method (lag distance, 11), D
and another associated fractal parameter K were calculated for the aforementioned profiles. It was
found that (J has no effect on calculated D. The estimated K, was found to increase with D, (J and d
according to the equation K, = 2.0 x 10 "d0J50"95D145 The parameter K seems to have potential
to capture the scale effect of roughness profiles. Suitable ranges for II were estimated to obtain
computed D within ± 10% of the D used for the generation and also to satisfy a power functional
relation between the variogram and h. Results indicated the importance of removal of 110n­
stationarity of profiles to obtain accurate estimates for the fractal parameters. It was found that at
least two parameters are required to quantify stationary roughness; the parameters D and K,. are
suggested for use with the variogram method. In addition, one or more parameters should be
used to quantify the non-stationary part of roughness, if it exists; at the basic level, the mean
inclination/declination angle of the surface in the direction considered can be used to represent the
non-stationarity. A new concept of feature size range of a roughness profile is introduced in this
paper. The feature size range depends on d, D and 0'. The suitable II range to use with the variogram
method to produce accurate fractal parameter values for a roughness profile was found to depend
on both d and D. It is shown that the feature size range of a roughness profile plays an important
role in obtaining accurate roughness parameter values with both the divider and the variogram
methods. The minimum suitable II was found to increase with decreasing d and increasing D.
Procedures are given in this paper to estimate a suitable II range for a given natural rock joint protile
to use with the variogram method to estimate D and K, accurately for the profile. «) 1998 Elsevier
Science Ltd. All rights reserved.

I. INTRODUCTION

Strength, deformability and flow properties of joints depend very much on the surface
roughness of joints. These effects arise from the fact that the surfaces composing a joint are
rough and mismatched at some scale. The shape, size, number, and strength of contacts
between the surfaces control the mechanical properties. The separation between the surfaces
or the "aperture" determines the hydraulic properties. Therefore, accurate quantification
of roughness is important in modeling strength, deformability and fluid flow behaviours of
joints. Rock mass strength, deformability and fluid flow behaviours in turn depend very
much on the properties of joints.

The Joint Roughness Coefficient, JRC (Barton, 1973), various conventional statistical
parameters (Wu and Ali, 1978; Krahn and Morgenstern, 1979; Tse and Cruden, 1979:
Dight and Chiu, 1981; Maerz el al., 1990; Reeves, 1990) and fractal parameters (Brown
and Scholz, 1985; Miller et al., 1990; Power and Tullis, 1991 ; Huang el al., 1992: Odling,
1994; Den Outer el al., 1995; Kulatilake el al., 1995) have been suggested for quantification
of roughness ofrock joints using linear profiles. The limitations ofJRC and the conventional
statistical parameters in quantifying joint roughness were mentioned in a previous paper
(Kulatilake el al., 1995). The same paper discussed the controversial findings which appear
in the literature about using only the fractal dimension (Mandelbrat, 1983) to quantify
rockjoint roughness. A number of methods have been suggested in the literature to estimate
D of roughness profiles of a rock joint surface. They are the divider (Mandelbrot, 1967),
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Fig. I. lllustration of a self-similar and self"affine fractals.

box counting (Feder, 1988), variogram (Orey, 1970), spectral (Berry and Lewis, 1980),
roughness-length (Malinverno, 1990), and the line scaling (Matsushita and Ouchi, 1989)
methods.

Fractals can be either self-similar or self-affine. A self-similar fractal is a geometric
feature that retains its statistical properties through various magnifications of viewing. A
self-affine fractal remains statistically similar only if it is scaled differently in different
directions. Figure I illustrates the concepts of self-similarity and self-affinity. It is very
difficult for natural rock joint profiles to satisfy the requirements of self-similarity. There­
fore, in general, it is not appropriate to consider natural rock joint profiles to be self-similar.
However, they have the potential to be self-affine. The divider and the box counting
methods work well for self-similar profiles. Their applicability to self-affine profiles is highly
questionable at present (Kulatilake et at., 1995). Part of the controversial findings, which
appear in the literature, has resulted from application of the divider and the box methods
in quantifying rock joint roughness profiles. The variogram, spectral, roughness-length,
and the line scaling methods seem suitable to apply to self-affine profiles. However, it seems
that the fractal parameters calculated by each of these methods depend significantly on the
input parameter values used in each method, as well as on the stationary or non-stationary
nature of the profile. It is possible that some of the controversial findings, which appear in
the literature, might have resulted for the latter reasons. For stationary profiles, the mean
and the variance do not vary with the spatial location and the auto-correlation function
depends only on the lag distance, and not on the spatial location. In order to find ex pIa"
nations for the controversial findings which appear in the literature, it is necessary to
investigate the effect of input and profile parameter values on the accuracy of fractal
parameters calculated using each of these methods. Three recent papers have investigated
the accuracy of fractal parameters estimated through the spectral (Shirono and Kulatilake,
1997), roughness-length (Kulatilake and Um, 1997), and line scaling (Kulatilake et at..
1997) methods. This paper shows how such an investigation was performed for the vari­
ogram method, and presents the results and conclusions obtained.

2. MIl\IMUM AND MAXIMUM FEATURE SIZES OF A LINEAR ROUGH:--JESS PROFILE

Linear roughness of natural rock joint profiles can be measured either using a mech­
anical profilometer or a laser profilometer. Each profilometer has a smallest horizontal step
at which the height of the roughness profile can be measured. Therefore, even though the
roughness profiles of a natural rock joint surface are continuous, roughness profile data
obtained through a profilometer are available only at a certain interval of horizontal
spacing. When these roughness data are plotted, they may produce a profile as shown in
Fig. 2. In this profile, the adjacent data points are connected through linear segments. Event
though the horizontal length of each segment is the same, the inclined length (length of the
segment) changes from one segment to another, depending on the inclination angle of the
segment. Then the minimum feature size of a profile may be defined as the minimum
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Fig. 2. Concept of minim urn and maximum feature sizes.

segment length out of all the segment lengths between two adjacent data points on the
profile (Fig. 2). This minimum distance cannot be less than the horizontal distance at which
roughness height data are available. The maximum feature size may be defined as the
maximum segment length out of all the segment lengths between two adjacent data points
on the profile (Fig. 2). The difference between the maximum feature size and the minimum
feature size of a profile decreases as the profile gets smoother. Also, it is important to realize
that both the estimated minimum and the maximum feature sizes of a profile depend upon
the resolution of the instrument used in measuring roughness.

The concepts mentioned above on the minimum and the maximum feature sizes are
equally applicable for generated roughness profiles, because the generated values are avail­
able only at a certain interval of horizontal spacing. In the next section, it is shown that
both the minimum and the maximum feature sizes of a roughness profile have important
roles to play related to the accuracy of estimated D.

3. ILLUSTRATION OF THE INFLUENCE OF MINIMUM AND MAXIMUM FEATURE
SIZES OF A ROCGHNESS PROFILE ON THE ACCURACY OF ESTIMATED FRACTAL

DIMENSION USING THE DIVIDER METHOD

As pointed out earlier, irrespective of whether it is a natural rock joint or a generated
roughness profile, roughness data of a profile are usually available at a certain interval of
horizontal spacing. That allows one to estimate minimum and maximum feature sizes of a
given profile for that horizontal spacing. Possible influence of these feature sizes on the
estimated fractal dimension is shown in this section using the divider method.

The divider method is best visualized by considering a pair of dividers set to a particular
span and then walked along the roughness profile. The number of divider steps required to
cover the entire profile is counted, and then multiplied by the divider span, r, to give an
estimate of the profile length, L. The divider span is set to another value and the process is
repeated several times to produce a discrete relation between rand L. For self.-similar
fractals, the two are related linearly in log-log space according to the expression (Feder,
1988)

10gL = 10ga+(I-D)logr (I)

where log a is the intercept of the log Llog r plot. The slope of the log-log plot equals
I-D.

If the divider span is considerably shorter than the minimum feature size (for example,
see divider span 1 shown in Fig. 2), that span will virtually trace the profile without bridging
any peaks or valleys of the profile, returning the maximum possible value for the length.
Therefore, for divider spans which are considerably shorter than the minimum feature size,
the returned length L will be more or less the same. Due to this, the log L-Iog r curve
gradually flattens as shown in Fig. 3 as r decreases beyond the minimum feature size. When
the divider span is considerably larger than the maximum feature size (for example, see
divider span 2 shown in Fig. 2), the returned length will be close to the horizontal length
of the profile. Therefore, for the divider spans which are considerably larger than the
maximum feature size, the returned lengths will be very close to the horizontal length of
the profile. Due to this, the log Llog r curve gradually flattens as shown in Fig. 3 as r
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Fig. 3. Suitable range of r for the estimation of fractal dimension with the divider method.

increases beyond the maximum feature size. The aforementioned facts show the difficulty
of obtaining a unique slope for the log L·log r relation for the whole range of r as shown
in Fig. 3. The correct slope of log L-Iog r and thus the correct D can be obtained by fitting
a regression line to the log L-Iog r data in the non-flattening portion of the curve (i.e.
regression line I in Fig. 3). The above discussion indicates very clearly that there is a need
to select a suitable range for r, which is the input parameter in the divider method, taking
into account the minimum and the maximum feature sizes in order to obtain accurate D
values. Values of r considerably smaller than the minimum feature size or considerably
larger than the maximum feature size will produce erroneous D values which are almost I .

Similarly, for other methods which are used to estimate D, input parameters might
have to be in certain ranges in order to obtain accurate D values. This paper examines that
aspect in a systematic fashion for the variogram method.

4. GENERATION OF FRACTIONAL BROWNIAN FUNCTION PROFILES

Classical examples for self-affine profiles are the fractional Brownian functions (Saupe,
1988: Voss. 1988). Several methods are available to generate the fractional Brownian
profiles. The two most popular methods are the random midpoint displacement method
(Fournier et al., 1982) and the spectral synthesis method (Fox, 1987; Saupe, 1988: Voss,
1988).

In this study, the random midpoint displacement method was used to generate frac­
tional Brownian profiles. First, the coordinate axes x and yare selected along the horizontal
and vertical directions, respectively (Fig. 4). Then, two points (points I and 2 in Fig. 4) are
sdected at a certain distance apart to represent the starting and ending points of the profile.
By selecting these two points at the same vertical level, stationary profiles can be generated.
By choosing the above two points at different vertical levels, a non-stationary profile with
a trend can be generated. The x coordinate at point 3, x(3), is selected as (I!2)[x(l)+x(2)].
The y coordinate at point 3, y(3), is generated as

y(3) = Hy(I)+y(2)]+D 1 (2a)

where D 1 is normally distributed with mean zero and a variance Mgiven as
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Fig. 4. Generation of a stationary fractional Brownian profile using the midpoint displacement
method.

(2b)

where (J and H (0 < H < I) are, respectively, the initial standard deviation and the Hurst
exponent used in the generation. Note that D is related to H through D = 2- H. Figure 4
shows a typical generation for point 3. Then, at the second generation level, points 4 and 5
are generated according to the following equations:

x(4) = Hx(l)+x(3)]

y(4) = Hy(l)+y(3)]+D2

x(5) = ~[x(3)+ x(2)]

.v(5) = Hy(3) +y(2)] +D 2

where D 2 is normally distributed with mean zero and a variance ~~ given as

(3a)

(3b)

(3c)

(3d)

(3e)

The above procedure is repeated n times, to obtain a stationary fractional Brownian
profile at the nth generation level, having the selected D or Hand (J values. Note that the
values for two parameters are required to generate a fractional Brownian profile. At the
nth generation level, Dn is normally distributed with mean zero and a variance ~~ given
by
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(4)

At the nth generation level, the profile has 2" + I data points. The stationary Brownian
profiles generated for D 1.2 through 1,7 with G = 5 at the eleventh generation level are
shown in Fig. 5. At the eleventh generation level, the total profile has 2049 data points. The
total horizontal length of the profile is taken as 200 units. Therefore, each of these profiles
has a data density, £I, of 10,25 per unit length. All these profiles were generated with a
starting seed value of I.

S. MAIN FEATURES OF THE VARIOGRAM METHOD

Let Z(x) be a Gaussian process with stationary increments, mean 0, and the vari-
ogram function given by 2~>(.\', II) = E[(Z(x +11)- Z(x))"] where II is the lag distance along
the x-axis. If 2}t\', II) behaves like 11111 as II -> 0 (where H is the Hurst exponent), then the
fractal dimension, D. of Z(x) is equal to 2 H (Orey, 1970). To estimate D, first H should
be estimated. Before H is estimated. it is necessary to check whether the following power
law equation holds true:

(5)

where K, is a proportionality constant. This can be evaluated by checking the linearity of
the plot between log(variogram)h_.o and 10g(II). Note that the slope of log(variogram) and
log(h) plot is equal to 211.

Let x be the horizontal distance along a roughness profile and Z(x) be the height of
the roughness profile from the datum. To calculate the variogram for digitized roughness
profile data. the variogram is expressed in the discretized form as

2}'(x,lI)
I II

)' [Z(x,)-Z(x,+II)f
M,'--',

(6)

where M is the total number of pairs of roughness heights of the profile that are spaced at
a lag distance h. The variogram given by eqn (6) is termed the experimental variogram.

Because 11 = 2 - D, eqn (5) can be written as

(7)

From eqn (7), it is clear that the variogram is well related to the roughness. For the
same lag distance II, the higher the 2}'(x, h), the rougher the profile. Equation (7) shows that
the roughness is not only related to D, but also to K. and h. Note that log K. is equal to the
intercept of log(variogram) vs log II. In eqn (7). since 2}{v:, II) and h2

(1 m are positive. then
K, should be positive, If K is a constant and K. > 0, then when h < I, the higher the D,
the rougher the protlie. However, when h > I, the higher the D, the smoother the profile.
In addition, K need not be a constant. Therefore. it is clear that D along cannot quantify
roughness. The hypothesis will also be clear from the next section. When II = 1 unit.
2;'(x, h) = K" The unit of h can be changed from mm to km depending on the scale of the
roughness profile. Therefore, the value of K, can change depending on the unit chosen to
represent h. This meansK. has the potential to capture the scale effect of roughness.

6, EFFECT OF INPUT AND PROFILE PARAMETERS ON ACCURACY OF D

6.1. Influence olD on suitable h range
The generated profiles shown in Fig. 5 have the following properties: (a) horizontal

profile length = 200 units. (b) generation level = 11. (c) £I = 10,25 per unit length, (d)
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Fig. 5. Stationary fractional Brownian proliles at the II th generation level with (J = 5. d 10.25
and different J): (a) f) 1.7. (h) D = 1.6. (c) D = IS. (el) f) ].4. (e) D = 1.3 and (f) f) = [,2.

mlillmum feature size = (l.0977 units. and (e) (J = 5. The maximum feature size of the
profile increases with the D value used for the generation (Table I).

In applying the variogram method to generated fractional Brownian profiles, the
variogram was calculated for different h values starting from an initial h value and increasing
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Table I. Influence of D and a on maximum feature size of stationary fractional Brownian profiles having d = 10.25
per unit length

Maximum feature size

D a = 2.5 a=5 a = 7.5 a = 10

1.7
1.6
I.5
1.4
1.3
1.2

1439
0.725
0.369
0.199
0.127
0.105

2.873
1.441
0719
0.361
0191
0.124

4.308
2.158
1.073
0.530
0.264
0.151

5.743
2.876
1.428
0.701
0.342
0.182

the h sequentially by multiplying through an increment factor of 1.2. Figure 6 shows
log(variogram) vs log(h) plots obtained for the profiles in Fig. 5. These plots show that for
very small h values, log(variogram) vs log(h) is slightly non-linear. This range of non­
linearity increases with D. The plots also show that for h values greater than 10 (i.e.
log(h) = 1.0) the relation between log(variogram) and log(h) deviates from linearity. The
amount of deviation seems to increase with D. The linearity aspect between the above two
variables will be further investigated quantitatively. To estimate each pair of K, and D
through the plot between log(variogram) and log(h), seven consequent lag distances were
used. The estimated K,. and D were assigned to the middle h value of each seven lag
distances. Because, for each profile, the D used for the generation is known, the error
percentage of estimated D can be calculated. Figure 7 shows the plots between error
percentage of estimated D and h for the profiles shown in Fig. 5. In the same plots, the

-15

0=1.7, <1=5, d=10.25, stationary

0=1.2, <1=5, d=10.25, stationary

0=1.6, <1=5, d=10.25, stationary

D=1.3, <1=5, d=10.25, stationary

iO=1.5, <1=5, d=10.25, stationary

10=1.4, <1=5, d=10.25, stationary

LOG(h)

Fig. 6. Log(variogram) vs log(h) plots obtained for the stationary fractional Brownian profiles
having a = 5. d = 10.25 and different D.
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expected D and the ± 10% error bounds are also shown to determine the accuracy of the
estimated D. Figure 8 shows the range of h corresponding to each D to obtain estimated D
within ± 10% of the expected D for the profiles having d = 10.25 and (J = 5. It is clear
from Fig. 8 that the minimum suitable h to produce D within ± 10% error increases with
D, even though the variation is small. Note that this behaviour is compatible with the non­
linearity behaviour observed for log(variogram) vs log(h) for small h values. Figure 8 also
shows that there exist a tendency for maximum suitable h to produce D within ± 10% error
to increase with D.

The linearity of each log(variogram) vs. log(h) plot was examined by computing the
correlation coefficient, R (0 < R < 1), and the normalized standard error estimates. R
values closer to I and low normalized standard errors indicate strong linear n:lations. R
values greater than 0.93 and normalized standard errors less than 4% were obtained for h
ranges between the minimum suitable h (to produce D within ± 10% error) and a maximum
h of 5.72 for all the D values investigated. These R and normalized standard error values
indicate strong linear relations. Note that 5.72 is the lowest value obtained for the maximum
suitable h to produce D within ± 10% error among all the profiles investigated with
d = 10.25 and different D values. When 5.72 < h ~ 8.24, R values between 0.56 and 0.91 and
normalized standard error values between 5.6°;') and 8.0% were obtained for 1.4 ~S D ~ 1.7.
Some of these R and normalized standard error values do not show strong linear corre­
lations. That implies inapplicability ofeqn (5). For D = 1.3, normalized error values up to
4.7% were obtained when 5.72 < h ~ 6.87. According to the above findings, it can be

(a) D=1.7, 0'=5 and d=10.25

15
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'0
':R. 10 12 140
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(b) D=1.6,O'=5 and d=10.25
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12 14
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Fig. 7. Plots between percentage error of D and lag distance, h, for stationary fractional Brownian
profiles having <T = 5, d = 1025 and different D: (a) D = 1.7, (b) D = 1.6, (c) D = 1.5, (d) D 00 1.4,

(e) D = 1.3 and (f) D = 1.2.
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Fig. 8. Relation between h range to produce D within ± 10% error and fractal dimension for
stationary fractional Brownian proflles having II = 10.25 and (J = 5.

concluded that the suitable h range to obtain accurate D for stationary fractional Brownian
profiles having d = 10.25 and 1.2 ~ D ~ 1.7 is between the minimum suitable h to produce
D within ± 10% and 5.72. In Section 6.4, it will be shown that these suitable h ranges
change according to the d value.

The summary statistics for the calculated Kv in the suitable range of h for profiles with
different D and (J = 5 are given in Table 2. Table 2 shows that K, increases with D when (J

is kept constant.

6.2. EfI£'ct ol (J

All the estimations mentioned in the previous section were performed on stationary
fractional Brownian profiles generated with (J = 5. In order to study the effect of (J on the
estimated parameters, a few more stationary fractional Brownian profiles were generated

Table 2. Effect of D and (J of fractional Brownian profiles with d = 10.25 on estimated K,

I nput parameter values for
fractional Brownian profiles Summary statistics for K,

D (J(STD) Mean
Standard
deviation

Coefficient
of

variation Minimum Maximum

1.7
1.5
13
1.7
1.6
1.5
14
13
1.2
1.7
1.5
13
1.7
1.5
13

2.5
25
2.5
5
5
5
5
5
5
7.5
7.5
7.5

10
10
10

0.507 (l.O36 (Ul70 0429
0.070 0,005 0.fJ75 0.065
(Ull I 0.001 0.079 0.010
2.027 0.142 0.070 1.716
0.742 0.055 0.074 0.658
0.280 0.021 0.075 0.261
()I 08 0.009 0.080 0.101
0.042 OJlO3 0.079 0.040
0016 0.002 0.122 0.023
4.561 0.320 0.070 3.860
0.629 0.047 1),075 0.586
0.095 0008 0079 0.089
8.330 0.604 0.073 7.616
1.119 (1.084 OJJ75 1.043
0.169 (Um 0.079 0.158

0.601
0.085
(Um
2402
0.910
0,339
0135
0.052
0,015
5.405
0763
0.117
9804
1357
0.209
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with the following properties: (a) D = 1.5, (b) horizontal profile length = 200 units, (c)
generation level = 11, (d) 10.25 per unit length, and (e) minimum feature size = 0.0977
units and (J = 2.5, 7.5, and 10 (Figs 9a-9d). The necessary calculations were performed on
the profiles shown in Figs 9a-9d to estimate (a) maximum feature size, (b) D, (c) suitable h
ranges to obtain accurate D, and (d) Kv • The maximum feature size was found to increase
with (J (Table I). The error percentage of estimated D vs log(h) plots obtained for (J = 2.5,
5.0, 7.5 and 10 turned out to be exactly the same. Similar findings were obtained for profiles
having other D values and same d. These results indicate that (J has no influence on estimated
D and suitable h range. Figure 10 shows the log(variogram) vs log(h) plots obtained for the
profiles shown in Figs 9a-9d. These plots show that Kv increases with (J. Similar findings
were obtained for profiles with other D values having the same d. Table 2 shows that K,
increases significantly with (J when D is kept constant. Also, the table indicates that the
effect of (J on Kv increases with increasing D. Note also the low coefficient of variation
values obtained for Kv (Table 2) indicating high reliability for estimated K,.

6.3. Non-stationaryellect
All the profiles considered so far can be considered as stationary profiles. A stationary

profile has a constant mean and a variance, and an auto-correlation function which only
depends upon the lag distance irrespective of the spatial location. In order to study the
non-stationary effect on the estimated parameters, a new set offractional Brownian profiles
were generated with the following properties: (a) D = 1.5, (b) horizontal profile
length = 200 units, (c) generation level = II, (d) d = 10.25 per unit length, (e) minimum
feature size = 0.0977 units, (t) (J = 5, and (g) trend angles of the profiles 5 and 10 degrees
(Figs ge and t). For these non-stationary profiles, calculations were performed similar to
the calculations performed on the profiles shown in Fig. 5 to estimate the same parameters.

The maximum feature sizes of the generated non-stationary profiles with D = 1.5.
(J = 5 and the trend angles of 5 and 10 degrees turned out to be around 2.864 and 2.856.
respectively. Table I shows that the maximum feature size of the stationary profile with
D = 1.5, (J = 5 and trend angle = 0' is 2.8728. This indicates that the non-stationary effect
resulting from a global trend has negligible influence on the feature size range of a roughness
profile. Figure II shows plots between error 0;;, of estimated D and lag distance h for profiles
having D = 1.5. (J = 5 and different trend angles. The figure dearly indicates that the
calculated D can become inaccurate in the presence of a non-stationary portion of a
roughness profile. This instability of D in the non-stationary presence is also depicted in
Fig. 10. Similar findings were obtained for profiles with other D and (J values. Therefore,
for non-stationary profile, a suitable range for h does not exist and also the calculated K,
is inaccurate. To obtain accurate D and K" the stationary part of the non-stationary profile
should be used.

6.4. Influence ofdata density on suitable h range
Data density of fractional Brownian profiles can vary either due to a change in the

generation level, GL, or due to a change in the profile length, L. Effect of GL as well as L
on suitable h range is investigated in this section. In Section 6.1, it was concluded that the
minimum suitable h depends on the D value. On the other hand, it was concluded in Section
6.2 that (J has no influence on the suitable h range. Therefore, to study the intluence of data
density. profiles with different D but having the same (J are considered.

6.4.1. Influence of generation level (GL) on suitable h range. Figure 12 shows the
stationary fractional Brownian profiles having D = 1.5, (J = 5 and L = 200 for different
generation levels. The data density corresponding to each generation level is also given in
Fig. 12. The figure shows clearly how the details of a profile increase with increasing
generation level. The plots between the error percentage of estimated D and the lag distance
for the profiles shown in Fig. 12 are shown in Fig. 13. From Fig. 13 it is clear that the
minimum suitable h increases with decreasing d. Figure 14 shows the developed function
for this relation for D = 1.5 through regression analysis. Figure 14 also provides the
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Fig. 10. Relation betweelllog(variograrn) and log(h) for fractional Brownian protiks having D = 1.5.
d= 10.25 and difl'erent G and trend angles.

developed functions resulting from profiles having D = 1.2 and D 1.7 and different GL
or dvalues.

The exponent values obtained for the three developed functions are very close to minus
one. For all practical purposes, this developed relation for any D value can be considered
as hd = constant; the value of the constant increases with D. For natural rock joint profiles,
D greater than 1.5 can be considered as a rare situation. If the equation applicable for
D ,= 1.5 (i.e. hd 1.71) is used to compute the minimum suitable h corresponding to the d
value of a given natural rock joint profile, this h value \vill be greater than or equal to the
minimum suitable h arising from profiles having D :-( 1.5. Therefore. the minimum suitable
h computed through hd == 1. 71 can be used conservatively for natural rock joint profiles
having D :-( 1.5.

Figure 13 does not show a functional relation between the maximum suitable hand d.
HO\vever, the figure shows that it is possible to have at least seven h values between the
minimum suitable h and the maximum suitable h. if an increment of 1.2 is used for h. This
information is useful in applying to natural rock joint profiles. Therefore. to apply to
natural rock joint profiles, first the minimum suitable II can be calculated based on the
developed equation applicable for D = 1.5: then, six more h values can be calculated using
the obtained minimum h and the increment factor of 1.2. These seven h values then can be
used in determining D and K, for the given natural rock joint profile. It is important to
note that the developed equation corresponding to D =, ].5 is still not in the final form.
The final version of that equation is given at the end of Section 6.4.2 incorporating results
of effect of d arising due to both GLand L.

6.4.2. Influence o/pro/ile length (L) on suitable h range. Figure 15 shO\vs the stationary
fractional Brownian profiles having D = 1.5, (J = 5, GL= II, and different profile lengths.
All these profiles have 2049 data points. The data density corresponding to each profile
length is also given in Fig. 15. Each of these profiles \vas used to compute the minimum
suitable h. The developed relation between the minimum suitable hand d using the results
obtained for D = 1.5 is shown in Fig. 16. Note that again the exponent value in the relation
is almost minus one. In addition, the constant value is quite close to the value obtained
earlier for D = 1.5 using the profiles having constant L and different GL values. Therefore.
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Fig. II. Plots between percentage error of D and lag distance Ii for fractional Brownian profiles
having D = IS (J = 5. d 10.25 and different trend angles: (a) trend angle O. (b) trend

angle = 5 and (c) trend angle = 10 .

it was decided to combine the data shown in Fig. 16 and the data corresponding to D = 1.5
in Fig. 14 and develop the tinal relation between the minimum suitable hand d f~)r D = 1.5.
This final relation is shown in Fig. 17. Note that the exponent value in the relation is almost
minus one. Therefore. to apply to natural rock joint profiles, the following equation can be
used to estimate the minimum or the starting suitable h by knowing the d value for the
protile:

hd= 1.76 (8)
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The next six II values then can be calculated using the calculated minimum suitable II and
an increment factor of 1.2 for h. These seven h values then can be used in estimating D and
K, for the given natural rock joint profile.

6.5. E(f£'cl ofseed value on sui/able h range
In all the aforementioned investigations a seed value of I was used in generating the

required fractional Brownian profiles. In order to investigate the effect of seed value on
accuracy of D, several functional Brownian profiles having D = 1.5, (T ~= 5, GL= 11,
L = 200. d = 10.25 were generated using different seed values (Fig. 18). Eaeh of these
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• D=1.2: h = 0.6395d·09583

R2 = 0.9982

• D=1.5: h= 1.7065d-09734

R2 = 0.9955

4 D=1.7: h= 2.2918d-09584

R2 =0.9815"
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Fig. 14. Plots between minimum suitable lag distance and data density for stationary fractional
Brownian profiles having D = 1.2. D = 1.5. D = 1.7, L = 200 and different GL.

profiles was used to estimate the suitable h range to satisfy an R value of greater than 0.85
and D to be within 10% error. The obtained results (Fig. 19) show that the seed value has
negligible influence on suitable h range.

7 SUMMARY AND CONCLUSIONS

A new concept of feature size range of a roughness profile is introduced in the paper.
Conceptually. it is shown that this feature size range plays a very important role in obtaining
accurate D values using the divider method. A previous paper (Kulatilake et al.. 1995) has
shown that accurate estimation of f) is difficult for self-affine profiles with the divider
method.

The fractional Brownian profiles considered in this research are quite similar to the
roughness profiles which are observed for natural rock joints. The profiles with low D and
G especially seem to be very close to natural rock joint profiles. Therefore, the results
obtained in this study are applicable in characterizing natural rock joint profiles. For a
given natural rock joint profile, the minimum feature size depends on the data density of
the profile. The maximum feature size of profiles increases with increasing D and G for
profiles having the same data density (Table I). Therefore, for a natural rock joint profile.
the maximum feature size depends on data density, D and G values of the profile. The
suitable h range obtained for the variogram method to produce accurate fractal parameter
values was found to depend on both data density and D, but not on G. Therefore, it is clear
that the feature size range plays an important role in obtaining accurate estimates for fractal
parameters through the variogram method.

The results obtained in this study clearly show that the variogram method cannot
produce accurate estimates for fractal parameters if the method is applied directly to non­
stationary profiles. However, if the method is applied to the stationary part of a non­
stationary profile, it produces accurate estimates for fractal parameters. Therefore, when
applying the variogram method to nalural rock joint profiles, first it is necessary to remove
the non-stationarity of the profile. if it exists.

The minimum suitable h value increases with decreasing d (Figs 14, 16 and 17). This
variation is dramatic for d < 1.0 (Figs 14 and (7). Therefore, in applying to natural rock
joint profiles. it is recommended to choose a unit of length so that d for a given profile
becomes greater than I. The minimum suitable h also increases with increasing D. However,
it was explained in Section 6.4 that eqn (8) provides a conservative estimate for the minimum
suitable h to use for a natural rock joint profile when the value of dis determined for the
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profile. Then six more values of h can be calculated based on the estimated minimum h
using an increment factor of 1.2. These seven values of h then can be used to estimate D
and K accurately for the given natural rock joint profile.

Figure 20 shows that the estimated K.. increases wilh both D and (J for a flxed d value;
effect of (J on K, incrcases with increasing D. Figure 21 shows that K increases with d when



Self-affine roughness using the variogram method 4187

seed=10000

- seed=5000

1 1

-seed=500:
1

_. _I...· -1.._ .. " ... .J. ..
I I I

I I I
t·- -~ seed=100 I

I

I I
..J ~_I_

1

r
I

- --1-- .. 1--­
I
I

- -j

r
I I
J._~l. _

I
f-

-- ---r
I

l-__._J
I I

I
.- -+

I I 1
I -1- I -1'
I I I I I

" ~I _I.-. I. -+ __ L I

I I I seed=50
.r-....d~~~~~ ........-<""~....."':'"'----:-.~I._.....:":_;t~. .....;..,...,~~;;I......'¢.;_.,....I ,I .""""~_";,,,,../

I I
I , I

r - r- -1 ---, . seed=1

o
o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

120

110

100 -

90
I

80 t I
-I-~

70

60 j
,

50

40

30

20

10 .

Fig. IX. FraClional Brownian profiles at thc 11 th generatIon levcI with D = 1.5, (J ,= 5, d =, 10.25
and differcnt sccd valucs.

~~.I !

I
I

I !

I I

I

~~
r

S~~
~~~;]

.- , .... .... - -_.._------- .. :--1---
0 2 3 4 5 6 7 8 9 10

Suitable h range

Fig. 19. Relation betwecn suitablc Ii range and seed valuc for t"ractional Brownian profilcs having
D= 1.5.GL= II,L=200andd 10.25.

both D and (J are kept constant. Multiple regression analysis performed on K, D, (J and d
produced the following equation at an R2 value of 0.9648:

(9)

It is important to note that values for two parameters (D and (J) are used in generating a
fractional Brownian profile. The aforementioned facts clearly indicate that at least two
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fractal parameters are required to quantify stationary roughness. The fractal parameters D
and K, may be used in quantifying the stationary roughness with the variogram method.
The parameter K can be used to capture the scale effect of roughness profiles. In addition,
further parameters are required to quantify the non-stationarity of a roughness prolile. if
it exists. In the presence of a non-stationarity due to a global trend, in many cases, just the
inclination or declination angle of the roughness profile in the direction considered \o\ould
be sufficient to estimate the non-stationarity.
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